
24

Human resource transaction management system security
optimize using multithreading with blowfish Algorithm
Ashu Krishna1, Satyajit Rath2 & Madhurendra Kumar3
1Research Scholar, Mewar University, Chittorgarh, Rajasthan 312901, India
2CNeM, CSIR-IMMT, Bhubaneswar 751013, India 312901, India
3CDAC, Noida 201307 UP, India

ABSTRACT

Today HRMS (Human resource management system) application
around data transmitting from one place to another is challenging and
doing this with real-time data is even more difficult to service time
minimize and secure. In this paper using Blowfish algorithm with
multithreading technology we will solve the waiting time using dis-
tributed data streaming platform. This approach will become ideal to
daily life where each and every user get services in optimize way with
secure direction.

Received 15.12.2023; Accepted 02.02.2024
DOI: 10.48165/gmj.2023.18.2.4
Copyright @ Gyan Management Journal (acspublisher.com/journals/index.php/gmj)

Year 2024, Volume-18, Issue-2 (July - December)

Research Paper

ARTICLE INFO

Key Words: HRMS, Blowfish
algorithm, Data, Multithreading,
and management

Introduction
Today Human Resource [HR] application around data
transmitting from one place to another is challenging
and doing this with real-time data is even more
difficult to service optimize and secure under Health
ERP. In this paper using Blow fish algorithm with
multithreading technology we will solve the waiting
time using distributed data streaming platform. This
approach will be become ideal to daily life where each
and every user get services in optimize way with secure
direction. It is critical for companies to align their

human resources to better achieve their strategic goals.
If you don’t the duration, assets along with vitality will be
wasted. An organization’s alignment with its corporate
goals can be enhanced by reviewing hiring procedures,
communicating mission and vision statements, using
shared goals, designing effective reward systems,
empowering staff, and promoting team development
within the organization. HR administration is the
management function that helps leaders to plot, pay,
recruit, appoint, supervise, grow, pay off and retain
the executive members. HR management pursues
four objectives: social, organizational, functional and

25

Gyan Management Journal Year 2024, Volume-18, Issue-2 (July-December)

personal development. Organizations must develop
policies. It has clear procedures and clear policies for its
people, which contribute to the effectiveness, continuity
and stability of the organization. HRMS communication
utilizing blowfish and multithreading with open space
in an optimize the secure communication The optimal
secure communication between substances requires a
secure method that prevents third parties from spying on
them, ensuring they communicate without interference
or listening in. Secure communication refers to the
methods applied for inurement the truthfulness and
its privacy of data transposed between individuals, in
such a way that third parties cannot captured what they
say. Beyond face-to-face discussions that cannot
be listened stealthily, laws, assets, specialized issues
(capture attempts and encryption), and sheer volume of
communications offer assistance constrain observation.
Innovation and its encroachments are at the center
of this talk, as many communications take put over
long separations and through innovation, and there’s
a developing mindfulness of the significance of the issue
of capture attempts. For this reason, this article centers
on communications that are intervened or catching by
innovation. See too Trusted Computing. Typically, an
approach right now beneath advancement that gives in
general security at the potential taken a toll of constrained
dependence on businesses and government offices.

After execution of this concept it’ll be guaran-
tee to fast communication and diminish holding up
time amid surge hours. Too it guarantees an supreme
prepare without making client stand in holding up.
Concurring to the back staff were posted at the clinic
to assist the client get it the steps and benefits of utiliz-
ing this benefit. Where imperative part will be play uti-
lize of great adjusting in Blow angle secure innovation
and administrations is or maybe straightforward when
managing with effortlessly unsurprising workloads and
ideally dependable accessible server.

Blowfish algorithm
Bruce Schneier’s 1993-developed Blowfish is a popular
symmetric-key block cipher encryption technique
known for its quick encryption and decryption processes.
This post explores its major characteristics, encryption
process, and Java implementation.

Centre for attraction of Blowfish

Block Cipher: Is a block cipher which encrypts each
individual block of sixty-four bits’ of plaintext.
• Symmetric Key Encryption: It encompasses the

encryption method using a symmetric key to ensure
the same key is used for encryption and decryption,
to and fro.

Variable Key Size: It converts the encrypted block in a
variable key sizes of up to four hundred forty eight bits,
making it more safe than unadventurous encryption
practices.
• Feistel Cipher: Feistel Cipher structure is used to

encrypt the block data and dole out plaintext into
two cut up and recursively encrypts each half using
mathematical operations.

Encryption Process
The Blowfish’s encryption procedure utilized below
mentioned ladders:
• Key Generation: The key expansion algorithm

is used for production of encryption key to the
original key and generates a series of sub keys.

• Initial Permutation: The first permutation
dispatches the 64-bit plaintext.

• Splitting: The -bit block is divided into two half,
each having thirty-two bits.

• Rounds: Blowfish is a block game with 16 rounds,
each involving a complex sequence of replacements
and permutations to both blocks.

• Final Permutation: With completion of sequences
of sixteen, a last permutation is applied to the
encrypted text after a last sequence.

Multithreading
Multithreading is a computer execution method that
allows several threads to be created within a process,
each of which runs independently yet shares process
resources. Threads, depending on the hardware, can
execute in perfect parallel if distributed throughout any
process.

26

Gyan Management Journal Year 2024, Volume-18, Issue-2 (July-December)

The major reason for adding threads to a pro-
gram is to increase performance. Performance can be
expressed in a variety of ways:

• Web servers employ many threads to handle data
requests concurrently.

• An image analysis algorithm launches multiple
threads simultaneously, segmenting a picture into
quadrants before applying filtering to the image.

• A ray-tracing program runs many threads to
compute visual effects, with the main GUI thread
rendering the final results.

Additionally, multithreading optimizes and minimizes
the utilization of computer resources. Because requests
from one thread do not impede requests from other
threads, application responsiveness increases.

The fact that multithreading requires less resource
intensity than executing many processes at once should
not be overlooked. Compared to establishing and man-
aging threads, creating progressions involves a lot more
overhead, time consumption, and regulating..

Compare-And-Swap optimization
Compare-and-swap could be a method utilized in
multithreading to supply non-blocking string security.
So distant what we have seen with synchronized and
Reentrant Bolt, are the blocking components. This CAS
procedure is indeed actualized at the hardware level right
into the machine’s Instruction Set. For case, within the
Intel x-86, it is executed as CMPXCHG (compare-and-
exchange) instruction. All the advanced multiprocessor
models back CAS in their instruction set. It is the
foremost well known primitive for executing non-
blocking concurrent collections. Most of the concurrent
collections in Java utilize CAS in combination with
minimal locking (Lock Striping) to realize a better degree
of concurrency. To get it how CAS works, consider our
Counter situation, where we have two strings T1 and
T2 and both are attempting to increase the esteem
of the Counter protest. We know that the increase
operation isn’t nuclear. It really isolates into three nuclear
operations: Perused, Increase, and Type in. And it is at
the Type in operation the CAS comes into the picture.

My Proposed work

My research methods based on multithreading java
concept using blowfish algorithm where there is an
improvement in the time involvedness and security in
a group of consumer and application server. Now we’ll
illustrate a classic interaction between two threads:
application server and a Consumer. An application
server A thread generates messages and queues them,
while a customer declaims and shows the output. For
the sake of realism, we set the queue’s maximum depth.
To make things more interesting, we will also make our
consumer thread considerably lazier and slower than
the Communication thread. This means that algorithm
at application server be able to implement reduce the
duration complexity between consumer and application
server. Now we’ll illustrate a classic interaction between
two threads: A application server and a Consumer. An
application server thread generates messages and adds
them to a queue, which a client may later read and see.

Fig. 1. Work flow diagram

Algorithm

Actual steps Blowfish algorithm using Multithread
follows in order to encrypt:
 Require: DataSeries: series of data
 Require: EN: number of element in the series
 Ensure: DataSeries: series of processed data
EN is 64 bits input data
EN is divided into two equal parts en1 and en2
For i=0 to 15 EN1=en1 xor Pi EN2=f(en1) xor en2
 // Process optimize using Multithreading concept
 //*
 Function THREADPROCESS (lower, upper,

DataSeries, EN)

27

Gyan Management Journal Year 2024, Volume-18, Issue-2 (July-December)

 for i = lower to upper do
 for j = lower + 1 to N do
 if (DataSeries[i].P1 R A[j].P1) then . R is the

relation between elements
 DataSeries [i].P2 = DataSeries [i].P2 ∪ {A[j]}
 DataSeries [j].P2 = DataSeries [j].P2 ∪ {A[i]}
EN1=en2 xor P18
EN2=en2 xor P17
Combine en1 and en2
 end if
 End for
 End for
 Return DataSeries
 End function
 *//
For decryption, this process is applied, except that the
sub-keys Pi must be provided in opposite direction.
Program Implementation
//*
import java.io.UnsupportedEncodingException;
import java.nio.charset.Charset;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.util.Base64;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.SecretKeySpec;
// Security optimize time
public class BlowfishThread {
 public void run()
 {
public String encrypt(String password, String key)
throws
 NoSuchAlgorithmException, NoSuchPadding
Exception,
 InvalidKeyException, IllegalBlockSizeException,
 BadPaddingException, UnsupportedEncoding
Exception {
 byte[] KeyData = key.getBytes();
 SecretKeySpec KS = new SecretKeySpec(KeyData,
“Blowfish”);
 Cipher cipher = Cipher.getInstance(“Blowfish”);
 cipher.init(Cipher.ENCRYPT_MODE, KS);
 String encryptedtext = Base64.getEncoder().
 encodeToString(cipher.doFinal(password.

getBytes(“UTF-8”)));
 return encryptedtext;
 }
 public String decrypt(String encryptedtext, String key)
 throws NoSuchAlgorithmException, NoSuch
PaddingException,
 InvalidKeyException, IllegalBlockSizeException,
 BadPaddingException {
 byte[] KeyData = key.getBytes();
 SecretKeySpec KS = new SecretKeySpec(KeyData,
“Blowfish”);
 byte[] ecryptedtexttobytes = Base64.getDecoder().
 decode(encryptedtext);
 Cipher cipher = Cipher.getInstance(“Blowfish”);
 cipher.init(Cipher.DECRYPT_MODE, KS);
 byte[] decrypted = cipher.doFinal
(ecryptedtexttobytes);
 String decryptedString =
 new String(decrypted, Charset.forName(“UTF-8”));
 return decryptedString;
 }
 try {

 }
 catch (Exception e) {
 // Throwing an exception
 System.out.println(“Exception is caught”);
 }
 }
 public static void main(String[] args) throws Exception
{
BlowfishThread obj=new BlowfishThread ();
Thread t =new Thread (obj);
final String password = “Cdac@123”;
 final String key = “cdac12345”;
 System.out.println(“Password: “ + password);
 BlowfishDemo obj = new BlowfishDemo();
 String enc_output = obj.encrypt(password, key);
 System.out.println(“Encrypted text: “ + enc_output);
 String dec_output = obj.decrypt(enc_output, key);
 System.out.println(“Decrypted text: “ + dec_output);
 t.start();
 }
}
}
*//
Output:

28

Gyan Management Journal Year 2024, Volume-18, Issue-2 (July-December)

Password: KKTr@123
Encrypted text: 4DTHqnctCuk=
Decrypted text: KKTr@123
The research’ applications results show that the suggested
Multithreading Blowfish algorithm has the following
advantages over the current Blowfish algorithm:
• The first The benefit is the identical input

is converted to encrypted text, significantly
improving the ideal time security feature. This is
because a different random number is generated
in each round, which causes variations in the
multithreading blow-fish algorithm function’s
performance.

• The second major benefit is that it takes less time
than Blowfish algorithm because the Multithreading
parallel processing is used.

• 3rd advantage is higher throughput.
• 4th advantage is high security metric.
• 5th advantage is Avalanche value.
• 6th advantage is high efficiency.
• 7th advantage is high throughput.
• 8th advantage is higher efficiency.

In nutshell Blowfish algorithm with multithreading is
much more efficient compared to blowfish algorithm.
The above results clearly show that blowfish algorithm
with multipronged reading is more efficient than blowfish
algorithm in terms of encryption time, decryption time,
throughput, Avalanche effect, and Power consumption.
Blowfish Multithreading algorithm can be used on
consumer electronic devices like personal digital
assistants (PDAs) and smart phones, which consume
less memory and consume less power. It can be used on
personal database programs and can be used to encrypt
in removable media. It can be used for clinical data
collection and biometrics such as voice, facial, or finger
print authentication. This study can be extended further
with optimization techniques that have high potential.

Conclusion
Conclusion the Blowfish Algorithm with multithreading
was thoroughly studied. The algorithm was implemented
as a software application using Java. The software
application demonstrated the encryption and decryption
processes successfully.

After implementation of this concept it will be
ensure to quick communication and reduce waiting
time during rush hours. Also it ensures an absolute pro-
cess without making client stand in waiting. According
to the support personnel were posted at the organiza-
tion to help the HRMS User understand the steps and
benefits of using this service. Where important role will
be play use of good balancing in Blow fish secure tech-
nology and services is rather simple when dealing with
easily predictable workloads and ideally reliable avail-
able server.

References
Dr. Madhurendra Kumar,“Cloud computing Network

Problem and Storage solutions Using Ant colony
optimization” International Journal of Scientific
& Engineering Research Volume 7, Issue 12,
December-2016, ISSN 2229-5518

Dorigo M. and Blum C., “Ant Colony Optimization
Theory: A Survey,” in Theoretical Computer
Science, vol. 344, no. 2, pp. 243-278, 2005.

Dorigo M., Birattari M., and Stutzel T., “Ant Colony
Optimization,” IEEE Computational Intelligence
Magazine, vol. 1, no. 4, pp. 28-39, 2006.

Fangzhe C., Ren J., and Viswanathan R., “Optimal Resource
Allocation in Clouds,” in Proceedings of the 3rd
International Conferenceon Cloud Computing,
Florida, USA, pp. 418- 425, 2010.

Gao K., Wang Q., and Xi L., “Reduct Algorithm Based
Execution Times Prediction in Knowledge Discovery
Cloud Computing Environment,” the International
Arab Journal of Information Technology, vol. 11,
no. 3, pp. 268- 275, 2014.

Gao Y., Guan H., Qi Z., Hou Y., and Liu L., “A Multi-
Objective Ant Colony System Algorithm for
Virtual Machine Placement in Cloud Computing,”
Journal of Computer and System Sciences, vol. 79,
no. 8, pp. 1230-1242, 2013.

R. Buyya and M. Murshed. GridSim: A Toolkit for
the Modeling and Simulation of Distributed
Resource Management and Scheduling for Grid
Computing. Concurrency and omputation: Practice
and Experience, 14(13-15), Wiley Press, Nov.-Dec.,
2002.

29

Gyan Management Journal Year 2024, Volume-18, Issue-2 (July-December)

Ghalem B., Tayeb F., and Zaoui W.,“Approaches to
Improve the Resources Management in the Simulator
Cloudism,” in Proceedings of the Conference on
Interactionand Confidence Building Measures in
Asia,Lecture Notes in Computer Science, Istanbul,
Turkey, pp. 189-196, 2010.

Hsu C. and Chen T., “Adaptive Scheduling Based on
Quality of Service in Heterogeneous Environments,”
in Proceedings of the IEEEInternational Conference
on Multimedia and Ubiquitous Engineering,
California, USA, pp. 1-6, 2010.

Ijaz S., Munir E., Anwar W., and Nasir W.,“Efficient
Scheduling Strategy for Task Graphs in
Heterogeneous Computing Environment,” theInter-
national Arab Journal of Information Technology,
vol 10, no. 5, pp. 486-492, 2013.

Kessaci Y., Melab N., and Talbi E., “A Pareto- Based GA
for Scheduling HPC Applications on Distributed
Cloud Infrastructures,” in Proceedings of the IEEE
International Conference on High Performance
Computing and Simulation, Istanbul, Turkey, pp.
456-462, 2011

