
GIAN JYOTI E-JOURNAL, Volume 6, Issue 1 (Jan-Apr 2016) ISSN 2250-348X

12th National Conference on ‘Digital India: Key Essentials To Drive Vision into Reality’

Saturday, 19th December, 2015 at GJIMT, Sector-54, Mohali-160055, Punjab, India

http://www.gjimt.ac.in/gianjyoti-e-journal/ 54

Recent Trends in Parallel Computing

Gurinder Singh

Department of Applied Sciences

UIET, Hoshiarpur

Hoshiarpur, Punjab, India

Aman Kaura

Department of Applied Sciences

UIET, Hoshiarpur

Hoshiarpur, Punjab, India

Abstract

In this paper we have studied the recent

trends in parallel computation. A big task

that cannot be handled by single CPU can be

divided into small number of subtasks which

can be processed simultaneously by

different processor. At the end these

subtasks can be combined together. A

parallel computer consists of parallel

computing hardware, parallel computing

model, software support for parallel

programming. This paper explores the

different types of parallel computation.

Keywords: Parallel computation,

Distributed memory, Parallel Benchmarks,

Shared memory

I. INTRODUCTION

Computational requirements are ever

increasing, both in the area of scientific and

business computing. Silicon based processor

chips are reaching their ultimate limits in

processing speed, as they are constrained by

speed of light and certain thermodynamic

laws. In order to overcome this limitation

one possibility is to connect the multiple

processors working in coordination with

each other. There are several different forms

of parallel computing: bit-level, instruction

level, data and task parallelism. In parallel

computing, a computational task is broken

down in several similar subtasks that can be

processed independently and whose results

are combined after the completion of the

job. In the past years parallel machines have

become significant competitors to vector

machines in the quest for high performance

computing.

II. Hardware Architectures for Parallel

Processing

The core elements of parallel processing are

CPUs. On the basis of instructions and data

streams that can be processed

simultaneously, computer systems can be

classified into the following categories

A. Single Instruction Single Data (SISD)

B. Single Instruction Multiple Data

(SIMD)

C. Multiple Instruction Single Data (MISD)

D. Multiple Instruction Multiple Data

(MIMD)

GIAN JYOTI E-JOURNAL, Volume 6, Issue 1 (Jan-Apr 2016) ISSN 2250-348X

12th National Conference on ‘Digital India: Key Essentials To Drive Vision into Reality’

Saturday, 19th December, 2015 at GJIMT, Sector-54, Mohali-160055, Punjab, India

http://www.gjimt.ac.in/gianjyoti-e-journal/ 55

A. Single Instruction Single Data (SISD)

SISD is a type of computer architecture

in which a single uni-core processor

executes a single instruction stream, to

operate on data stored in a single

memory. Most of the conventional

computers are based on the SISD model.

All the data and instructions have to be

stored in the primary memory. The

speed of the processing element is

limited by the rate at which the computer

can transform the information internally.

Important examples of the model are

Workstations, Macintosh etc. Pipelined

processors and superscalar processors

are common examples found in most

modern SISD computers [1,2]

B. Single Instruction Multiple Data

(SIMD)

A SIMD is a multiprocessor machine

capable of executing the same

instruction on all the CPUs, but

operating on different data streams.

Machine based on this model are well

suited for scientific computing since

they involve lot vector and matrix

operation.

C. Multiple Instruction Single Data

(MISD)

A MISD computing system is a

multiprocessor machine capable of

executing different instructions on

different processing elements, but all of

them operating on same data-set.

Machines using this model are not useful

in most of the applications.

D. Multiple Instruction Multiple

Data(MIMD)

A MIMD computing system is a

multiprocessor machine capable of

executing multiple instructions on

multiple data sets. Each processing

elements in MIMD model have separate

instruction and data stream and hence

machines built using this model are

suited for different applications. They

are broadly classified into shared-

memory MIMD and distributed-memory

MIMD machines based on how all the

processing elements are coupled to the

main memory. According to the memory

model the parallel computational model

can be divided into three categories:

shared memory computational model,

distributed computational model and

hierarchical memory model.

III. Shared Memory Parallel Computing

Models

In shared memory architecture a number of

processors are connected to a common

central memory. Since all processors are

sharing a single address space, the data

sharing is fast but processes can corrupt

each other data at the same time. So the

semaphores and locks are used to save the

data from corruption. There is a lack of

GIAN JYOTI E-JOURNAL, Volume 6, Issue 1 (Jan-Apr 2016) ISSN 2250-348X

12th National Conference on ‘Digital India: Key Essentials To Drive Vision into Reality’

Saturday, 19th December, 2015 at GJIMT, Sector-54, Mohali-160055, Punjab, India

http://www.gjimt.ac.in/gianjyoti-e-journal/ 56

scalability between processing elements and

memory which means that we cannot add

processing elements as many as we need to a

limited memory.

A. PRAM Model

PRAM model is widely used shared memory

computing model for the design and analysis

of parallel algorithms and was first

developed by Fortune, Wyllie and

Goldschlager. Small numbers of processors

share a common global pool of memory.

The processors are allowed to access the

memory concurrently and take only one unit

of time to be completed. The PRAM model

has different instances. CRCW PRAM

model [3] that permits simultaneous read

and write to the same memory cell. CREW

PRAM [3] is another model that permits

simultaneous read to the same memory cell

but permits only one processor to write on a

cell at a time. Although the PRAM model is

easy to implement, it suffers from memory

and network contention problem.

IV. Distributed Memory Parallel

Computing Models

There are numbers of distributed memory

parallel computing models in which each

different computer having their own

memory are connected through a

communication network. Model BSP and

LogP models come under this category.

These models remove the shortcomings of

the shared memory computational memory.

V. Software support for Parallel

programming

Designing a parallel programming is a

challenging business. Two methodologies

are widely used for the purpose of parallel

programs. They are auto-parallelization

compiler and library based software. Auto

parallelization work in two fashions. First

one is complete automatic compiler which

finds the parallelism during the compilation

of source code. This approach mainly aims

to parallelize the loops like for and do.

Second one is program directed which uses

compiler directives to make the code

parallel.

VI. Parallel Benchmarks used in HPCC

Benchmarks are freely available

standardized computer programs that are

mostly used by the HPC community to

measure the system performance. There are

mainly three types of benchmarks: synthetic

benchmarks, kernel benchmarks and real

application benchmarks. Synthetic

benchmarks are small programs and did not

involve any real computation but work out

the basic functions of a machine. It

compares the relative efficiency of

processors. Example of this category is

GIAN JYOTI E-JOURNAL, Volume 6, Issue 1 (Jan-Apr 2016) ISSN 2250-348X

12th National Conference on ‘Digital India: Key Essentials To Drive Vision into Reality’

Saturday, 19th December, 2015 at GJIMT, Sector-54, Mohali-160055, Punjab, India

http://www.gjimt.ac.in/gianjyoti-e-journal/ 57

Whetstone benchmark [4], Dhrystone [5]

and wPrime etc. In Kernel benchmarks a

part of a large program is extracted and this

part of program is responsible for most of

the time of that problem. Examples are

LINPACK [6], NAS etc. In real application

benchmarks the code segment is the

application program itself. It is very useful

in measuring the overall system

performance but needs more time resources.

Examples are Perfect Benchmarks, SPEC

benchmarks etc.

VII. Conclusion

Benchmarks are freely available

standardized computer programs that are

mostly used by the HPC community to

measure the system performance. There are

mainly three types of benchmarks: synthetic

benchmarks, kernel benchmarks and real

application benchmarks. Synthetic

benchmarks are small programs and did not

involve any real computation but work out

the basic functions of a machine. It

compares the relative efficiency of

processors. Example of this category is

Whetstone benchmark [4], Dhrystone [5]

and wPrime etc. In Kernel benchmarks a

part of a large program is extracted and this

part of program is responsible for most of

the time of that problem. Examples are

LINPACK [6], NAS etc. In real application

benchmarks the code segment is the

application program itself. It is very useful

in measuring the overall system

performance but needs more time resources.

Examples are Perfect Benchmarks, SPEC

benchmarks etc.

References

1. Quinn, Michael J. Chapter 2: Parallel

Architectures, Parallel Programming in C

with MPI and OpenMP. Boston: McGraw

Hill, 2004, ISBN 0-07-282256-2.

2. Ibaroudene, Djaffer. Chapter 1:

Motivation and History, Parallel

Processing. St. Mary's University, San

Antonio, TX. Spring 2008.

3. Jaja J. “An Introduction to Parallel

Algorithms”. Addison-Wesley, 1992.

4. Curnow H.J and Wichman B.A. “A

Synthetic Benchmark”. Computer

Journal, vol19, no. 1, Feb 1976.

5. Weicker R.P. “DHRYSTONE: A

Synthetic Systems Programming

Benchmark”. Communications of the

ACM, vol. 27, no.10, pp. 1013-1030,

October, 1984.

6. Dongrra J.J. “Performance of Various

Computers Using Standard Linear

Equation Software”. Tech. Rep. CS-89-

85, University of Tennessee and Oak

Ridge National Laboratory, November,

1995.

